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Numerical simulation of the Kardar-Parisi-Zhang equation
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We simulate the Kardar-Parisi-Zhang equation [Phys.

Rev. Lett. 46, 889 (1986)] in 2 + 1

dimensions. It is a nonlinear stochastic differential equation that describes driven growing interfaces.
The Hopf-Cole transformation is used in order to obtain a stable numerical scheme. The two relevant

critical exponents are precisely measured.

PACS number(s): 64.60.Ht, 05.40.+j, 05.70.Ln, 68.35.Fx

I. INTRODUCTION

Growing surfaces exhibit a nonequilibrium critical dy-
namics with scaling properties similar to those of equilib-
rium critical phenomena. Many models have been pro-
posed to describe the universal features of the growth
process. The first numerical investigations [1] showed
that the critical behavior of the surface is described by
two exponents z and x. The interface roughness W (to
be defined later) grows with time ¢ as

W~ LX f(t L7%), (1)

where L is the system size. Among the possible sys-
tems possessing such a scaling law, we mention, for in-
stance, lattice ballistic deposition models, lattice stack-
ing models, or Eden clusters. In principle, the exponents
x and z are model dependent. In [2], Kardar, Parisi,
and Zhang (KPZ) proposed a nonlinear stochastic differ-
ential equation to describe growing interfaces. Nonlin-
earity was related to lateral growth of the interface. A
dynamic renormalization group analysis [2—4] determined
the time evolution of the effective nonlinearity parameter
A related to the deposition speed. The exponents x and
z are defined asymptotically and depend on the partic-
ular fixed-point A* which is reached; the nonasymptotic
behavior is not universal and may be rather complicated.
Dimensionality of space is a priori relevant. If A* # 0,
the hyperscaling relation x + z = 2 holds perturbatively.
In d = 1 (growth on a line), exact exponents can be com-
puted and they are also supported by several numerical
simulations on the various models listed above. This fa-
vors the possibility that all these discrete models may
be in the same dynamical universality class. In d = 2,
the perturbative renormalization group analysis breaks
down, the flow is toward a strong coupling fixed point
which determines the exponents, and numerical simula-
tion becomes very interesting. Kardar, Parisi, and Zhang
conjectured [2] the x, z exponents to be superuniversal,
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namely independent on d, but they did not give analyt-
ical arguments. Successive works on the subject can be
roughly divided into three groups. The first one deals
with Eden cluster growth [5] and off lattice aggregation
models with possible readjustement mechanisms [6]. The
second group studies directed polymers [7] and restricted
solid on solid (RSOS) models [8] which are related to
the KPZ equation. Finally, the third group simulates di-
rectly the KPZ equation by discretizing space and time
and averaging over the realizations of the noise [9-12].

Apart from the direct simulations of the KPZ equa-
tion, the information on the exponents extracted from
the other models is problematic. Indeed, directed poly-
mers have been studied only in the zero temperature limit
whereas the other models have not been shown rigorously
to be in the same universality class of the KPZ equation.
On the other hand, the direct simulation of the stochas-
tic equation is hampered by great crossover effects which
are relevant on the time scale actually explored in the
simulations. Numerical instabilities are also potentially
harmful.

A summary of the situation in d = 2 is the following:
(1) the hyperscaling relation has strong numerical sup-
port and (ii) the exponents seem to rule out the supe-
runiversality hypothesis and agree reasonably well with
the empirical prediction of [13].

Up until now, the most precise data on 8 = x/z and
x coming from direct simulations of the KPZ equation
are those of Moser et al. [12] who however did not check
X + z = 2. The authors of [12] complain about numerical
instabilities arising at large nonlinearity: this unpleasant
situation forced them to utilize very small integration
steps not required in order to reduce the systematic error
due to finite integration step. In this work we propose
the simulation of the KPZ equation after the Hopf-Cole
transformation which improves numerical stability due
to the elimination of the nonlinear term. We measure 3
and x with high statistics and confirm the results of [12].
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II. SCALING BEHAVIOR OF THE
KARDAR-PARISI-ZHANG EQUATION

The Kardar-Parisi-Zhang equation [2] in d dimensions
for the interface height h(z, t) is

%té =v VZh + % (Vh)? + q(z,t), zeR?, (2)
where 7 is a Gaussian white noise with constant diffusion
D and it can be thought as a suitable limit of a Gaussian
colored noise. The relaxation term in Eq. (2) provides
the surface tension responsible for molecular readjust-
ment. The nonlinear term is related to lateral growing of
the interface. The KPZ equation is actually a truncated
gradient expansion and its unbroken symmetry under in-
finitesimal tilts is ultimately responsible for the hyper-
scaling relation x + z = 2. We can rescale time and A in
order to reduce the number of independent parameters
in the KPZ equation. Its canonical form is thus

Oh 2 JX 2

E-_—V h+ VA(Vh)* + n(z,t), (3)
where 7 has now unit variance and where we have
changed variable

2)2D

v3

- A (4)

The equation depends thus on only one parameter which
determines the degree of nonlinearity. The quadratic
term (Vh)? is responsible for numerical instabilities since
the typical surface becomes more and more rough. The
measure of 3, x is done according to Eq. (1) by looking
at the interface roughness W defined as

W = (B2) = (%) — ()2, (5)

where the average is over the lattice and W (t, L) is av-
eraged over the noise. At the unstable trivial fixed point
A =0, the growth is marginal and follows the law [14]

W2 ~ Int. (6)

Starting from A # 0, we expect to observe the asymptotic
scaling

W~ P (7

in infinite volume. Actually, the determination of 3 is
made difficult by the competition of finite size saturation
and crossover. Finite size effects allow the observation of
Eq. (7) only as an intermediate regime and at ¢ = oo we
have saturation with W — W,4(L). On the other hand,
the above scaling is asymptotic and holds only when A
has grown up to its critical point. The evolution from an
initial small A is hampered by a strong crossover effect
which results in a fictitious effective value for the (3 ex-
ponent. The solution is to choose the initial A as large
as possible, taking into account that, at large A, a small
time step is needed to keep the systematic error small
in the integration of the stochastic equation. In order
to reduce the problem of numerical instabilities, we pro-
pose to utilize the Hopf-Cole transformation (see [15] for
a different application)

-1

v

This gives a diffusion equation with multiplicative noise

h lnw, w=exp (\/Xh) . (8)

b = Viw 4+ VA w n(z, t). 9)

We used conventional analysis rules in arriving at Eq. (9)
and, consequently, Eq. (9) is to be understood in
Stratanovich interpretation. Namely, the noise 7(z,t)
correlates with the field w(z,t) at the same point. The
Ito representation of the same equation, which is more
suitable for numerical work, is [16]

W = V2w + VA w n(z,t) + %‘w. (10)
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In Eq. (10) the fields n(z,t) and w(z,t) do not correlate
at the same point. This is exactly what will be assumed
in the discrete version of Eq. (10) in the following section.
On the other hand, the term %w which is left in the nu-
merical scheme rigorously based on Eq. (10) can be easily
eliminated by changing the variables w' = w exp(\t/2).

J

w§§+1) = wg,';-) +e (wfi)lj + w,ﬁi)l,,- + w,(';)+1 + w,(T;)_l
We remark that this discretization follows the

Stratanovich interpretation of the stochastic equation
and indeed reproduces a discrete version of Eq. (10). We
used lattices with size up to L = 512. Every integration
of the KPZ equation was averaged over 128 realizations
of the noise. We used both independent Gaussian ran-
dom numbers generated by the Box-Muller algorithm [17]
and uniform random numbers with zero mean and unit
variance as suggested in [10]. Either choices are possible
up to the precision of the chosen integration scheme. We
checked on trial runs that the average over 128 processes
gave the same results with the two choices. Therefore, for
the long runs, we have used the uniform random numbers
which are considerably faster. The value of the integra-
tion step was chosen in order to have irrelevant differences
with smaller values. In Fig. 1, we show (from top to bot-
tom) the behavior of W at A = 25,10,7.5,5,2; we have
used € = 5x107%,1073,2.5 x 10~ 3 for the first three and
€ = 5% 1073 for the others. At A = 25 we have taken data
on the L = 512 lattice, the other values are at L = 256.
The crossover effect inducing effective exponents is evi-
dent in the figure. Effective increasing values of 3 are
obtained as A is increased. In order to avoid finite size
effects, we determined 3 over a range where changing L
from 256 to 512 was irrelevant. We obtained 3 = 0.240(1)
from the upper curve corresponding to A = 25. The ex-
ponent x has been obtained by studying the saturation
width as a function of L by mean of long runs. The points
in Fig. 2 give x = 0.404(1). Therefore, the hyperscal-
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III. THE SIMULATION

We have simulated the d = 2 growth process on a
square lattice with periodic boundary conditions. We
utilized the following Euler scheme for the integration of
the Hopf-Cole diffusion equation:

- 4w("~)

it (11)

A () (n) #(n)
§wi,j + Vel w,; S §i’j .

ing relation is well satisfied. Our results are compatible
with [12] and suggest that the empirical conjecture of [13]
is incorrect. However, we cannot be sure to have elimi-
nated totally the crossover effects. The common lore is
that, due to saturation effects, numerical estimates for 3
must be considered lower bounds. It is clear that, even
if the agreement with RSOS models is encouraging, an
analytical upper bound would be desirable.

IV. CONCLUSIONS

The main goal of this paper has been a high statistics
simulation of the KPZ equation put in an alternative
form after the Hopf-Cole transformation. This change of
variables in the stochastic equation does not present any
problem from the point of view of the simulations and is
numerically stable. Our measures of 8 and x satisfy the
hyperscaling relation and are compatible with the result
of [12]. We do not rule out the conjecture of [13] because
of the theoretical uncertainty on the systematic error.
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